博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者...
阅读量:5141 次
发布时间:2019-06-13

本文共 3855 字,大约阅读时间需要 12 分钟。

 

python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比

附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/linyi0604/MachineLearning

 

1 import pandas as pd  2 from sklearn.cross_validation import train_test_split  3 from sklearn.feature_extraction import DictVectorizer  4 from sklearn.tree import DecisionTreeClassifier  5 from sklearn.metrics import classification_report  6 from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier  7   8 '''  9 集成分类器: 10 综合考量多个分类器的预测结果做出考量。 11 这种综合考量大体上分两种: 12     1 搭建多个独立的分类模型,然后通过投票的方式 比如 随机森林分类器 13         随机森林在训练数据上同时搭建多棵决策树,这些决策树在构建的时候会放弃唯一算法,随机选取特征 14     2 按照一定次序搭建多个分类模型, 15         他们之间存在依赖关系,每一个后续模型的加入都需要现有模型的综合性能贡献, 16         从多个较弱的分类器搭建出一个较为强大的分类器,比如梯度提升决策树 17         提督森林决策树在建立的时候尽可能降低成体在拟合数据上的误差。 18          19 下面将对比 单一决策树 随机森林 梯度提升决策树 的预测情况 20  21 ''' 22  23 ''' 24 1 准备数据 25 ''' 26 # 读取泰坦尼克乘客数据,已经从互联网下载到本地 27 titanic = pd.read_csv("./data/titanic/titanic.txt") 28 # 观察数据发现有缺失现象 29 # print(titanic.head()) 30  31 # 提取关键特征,sex, age, pclass都很有可能影响是否幸免 32 x = titanic[['pclass', 'age', 'sex']] 33 y = titanic['survived'] 34 # 查看当前选择的特征 35 # print(x.info()) 36 ''' 37 
38 RangeIndex: 1313 entries, 0 to 1312 39 Data columns (total 3 columns): 40 pclass 1313 non-null object 41 age 633 non-null float64 42 sex 1313 non-null object 43 dtypes: float64(1), object(2) 44 memory usage: 30.9+ KB 45 None 46 ''' 47 # age数据列 只有633个,对于空缺的 采用平均数或者中位数进行补充 希望对模型影响小 48 x['age'].fillna(x['age'].mean(), inplace=True) 49 50 ''' 51 2 数据分割 52 ''' 53 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) 54 # 使用特征转换器进行特征抽取 55 vec = DictVectorizer() 56 # 类别型的数据会抽离出来 数据型的会保持不变 57 x_train = vec.fit_transform(x_train.to_dict(orient="record")) 58 # print(vec.feature_names_) # ['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male'] 59 x_test = vec.transform(x_test.to_dict(orient="record")) 60 61 ''' 62 3.1 单一决策树 训练模型 进行预测 63 ''' 64 # 初始化决策树分类器 65 dtc = DecisionTreeClassifier() 66 # 训练 67 dtc.fit(x_train, y_train) 68 # 预测 保存结果 69 dtc_y_predict = dtc.predict(x_test) 70 71 ''' 72 3.2 使用随机森林 训练模型 进行预测 73 ''' 74 # 初始化随机森林分类器 75 rfc = RandomForestClassifier() 76 # 训练 77 rfc.fit(x_train, y_train) 78 # 预测 79 rfc_y_predict = rfc.predict(x_test) 80 81 ''' 82 3.3 使用梯度提升决策树进行模型训练和预测 83 ''' 84 # 初始化分类器 85 gbc = GradientBoostingClassifier() 86 # 训练 87 gbc.fit(x_train, y_train) 88 # 预测 89 gbc_y_predict = gbc.predict(x_test) 90 91 92 ''' 93 4 模型评估 94 ''' 95 print("单一决策树准确度:", dtc.score(x_test, y_test)) 96 print("其他指标:\n", classification_report(dtc_y_predict, y_test, target_names=['died', 'survived'])) 97 98 print("随机森林准确度:", rfc.score(x_test, y_test)) 99 print("其他指标:\n", classification_report(rfc_y_predict, y_test, target_names=['died', 'survived']))100 101 print("梯度提升决策树准确度:", gbc.score(x_test, y_test))102 print("其他指标:\n", classification_report(gbc_y_predict, y_test, target_names=['died', 'survived']))103 104 '''105 单一决策树准确度: 0.7811550151975684106 其他指标:107 precision recall f1-score support108 109 died 0.91 0.78 0.84 236110 survived 0.58 0.80 0.67 93111 112 avg / total 0.81 0.78 0.79 329113 114 随机森林准确度: 0.78419452887538115 其他指标:116 precision recall f1-score support117 118 died 0.91 0.78 0.84 237119 survived 0.58 0.80 0.68 92120 121 avg / total 0.82 0.78 0.79 329122 123 梯度提升决策树准确度: 0.790273556231003124 其他指标:125 precision recall f1-score support126 127 died 0.92 0.78 0.84 239128 survived 0.58 0.82 0.68 90129 130 avg / total 0.83 0.79 0.80 329131 132 '''

 

转载于:https://www.cnblogs.com/Lin-Yi/p/8971348.html

你可能感兴趣的文章
web.config在哪里
查看>>
SQL Server 2000 版本支持的最大物理内存量
查看>>
spring IOC装配Bean(注解方式)
查看>>
[面试算法题]有序列表删除节点-leetcode学习之旅(4)
查看>>
SpringBoot系列五:SpringBoot错误处理(数据验证、处理错误页、全局异常)
查看>>
kubernetes_book
查看>>
Redis 常用数据结构命令
查看>>
软件工程课堂作业
查看>>
OpenFire 的安装和配置
查看>>
web.config详解
查看>>
ZJOI2018游记Round1
查看>>
侧边栏广告和回到顶部
查看>>
https://blog.csdn.net/u012106306/article/details/80760744
查看>>
ios应用版本号设置规则
查看>>
海上孤独的帆
查看>>
error: more than one device and emulator 问题解决
查看>>
Java基础:容器
查看>>
YUV摘要格式
查看>>
【方法2】删除Map中Value反复的记录,而且仅仅保留Key最小的那条记录
查看>>
C# CheckedListBox控件的使用方法
查看>>